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An Experimental Global Prediction System for
Rainfall-Triggered Landslides Using Satellite
Remote Sensing and Geospatial Datasets

Yang Hong, Robert F. Adler, and George Huffman

Abstract—Landslides triggered by rainfall can possibly be fore-
seen in real time by jointly using rainfall intensity-duration
thresholds and information related to land surface susceptibility.
However, no system exists at either a national or a global scale
to monitor or detect rainfall conditions that may trigger land-
slides due to the lack of sufficient ground-based observing net-
work in many parts of the world. Recent advances in satellite
remote sensing technology and increasing availability of high-
resolution geospatial products around the globe have provided
an unprecedented opportunity for such a study. In this paper, a
framework for developing an experimental real-time prediction
system to identify where rainfall-triggered landslides will occur
is proposed by combining two necessary components: surface
landslide susceptibility (LLS) and a real-time space-based rain-
fall analysis system. First, a global LS map is derived from
a combination of semistatic global surface characteristics (dig-
ital elevation topography, slope, soil types, soil texture, land
cover classification, etc.) using a geographic information system
weighted linear combination approach. Second, an adjusted em-
pirical relationship between rainfall intensity-duration and land-
slide occurrence is used to assess landslide hazards at areas
with high susceptibility. A major outcome of this paper is the
availability for the first time of a global assessment of landslide
hazards, which is only possible because of the utilization of global
satellite remote sensing products. This experimental system can
be updated continuously using the new satellite remote sensing
products. This proposed system, if pursued through wide inter-
disciplinary efforts as recommended herein, bears the promise to
grow many local landslide hazard analyses into a global decision-
making support system for landslide disaster preparedness and
mitigation activities across the world.

Index Terms—Landslide, landslide susceptibility (LS), natural
disasters, real-time precipitation analysis, satellite remote sensing.

1. INTRODUCTION

ANDSLIDES are one of the most widespread natural
hazards on Earth, responsible for thousands of deaths and
billions of dollars in property damage every year. In the U.S.
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alone, landslides occur in every state, causing an estimated
US $2 billion in damage and 25-50 deaths each year [1].
Annual average loss of life from landslide hazards in Japan is
170 [2]. The situation is much worse in developing countries
and remote mountainous regions due to lack of financial re-
sources and inadequate disaster management ability. Recently, a
landslide, triggered by “La Nina” rains, buried an entire village
on the Philippines Island of Leyte, on February 17, 2006, with
at least 1800 reported deaths and only three houses left standing
of the original 300. A precipitation analysis using multiple
satellites [3], including the National Aeronautics and Space
Administration (NASA)’s Tropical Rainfall Measuring Mission
(TRMM), reported that 500 mm of heavy rainfall fell on that
area in a ten-day period [4]. The need to develop more effective
spatial coverage of landslide susceptibility (LS) and real-time
hazard monitoring for vulnerable countries and remote areas
remains apparent and urgent [2].

Landslides triggered by rainfall can possibly be predicted by
modeling the relationship between rainfall intensity-duration
and landslide occurrence [S]. Currently, no system exists at a
global scale to identify rainfall conditions that may trigger land-
slides, largely due to lack of field-based observing networks
in many parts of the world. In particular, developing coun-
tries usually lack expensive ground-based monitoring networks.
Thus, for many countries around the world, remote-sensing
information may be the only possible source of rainfall data and
land surface characteristics available for such study. Recent ad-
vances in satellite-based precipitation observation technology
and increasing availability of high-resolution geospatial prod-
ucts at global scale are providing an unprecedented opportunity
to develop a real-time prediction system for a global view of
rainfall-triggered landslides.

In this paper, a framework is proposed to develop a real-time
prediction system for rainfall-triggered landslides around the
globe. Drawing on the heritage of a space-based global precip-
itation observation system and remotely sensed surface charac-
teristics products, this paper first derives a global susceptibility
map from the geospatial datasets and then links this analysis
to the dynamic trigger, real-time rainfall observations, to assess
landslide hazards. The goal of this new system is to acquire a
global view, rather than a site-specific view, of rainfall-triggered
landslide disasters in a real-time fashion. Section II details the
framework and its two major components, Section III describes
case studies using a prototype of this proposed system, and
Section IV presents concluding remarks and discusses future
work and possible improvements.

0196-2892/$25.00 © 2007 IEEE
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Comp. 1: Dynamic trigger: Rainfall
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Comp. 2: Landslide Susceptibility Map
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Fig. 1.
components, but not covered in this paper.

II. FRAMEWORK, DATA, AND GLOBAL LS MAP
A. Framework for Predicting Rainfall-Triggered Landslides

In this paper, we are primarily concerned with shallow land-
slides that involve poorly consolidated soils or colluviums on
steep hill slopes. Shallow landslides, sometimes referred to as
debris flows, mudslides, mudflows, or debris avalanches, are
rapidly moving flows of mixes of rocks and mud, which have
the potential to kill people and destroy homes, roads, bridges,
and other property. This paper addresses those landslides
caused primarily by prolonged, heavy rainfall on saturated hill
slopes characterized by high permeability. Rainfall-triggered
landslides may mobilize into fast-moving mudflows, which
generally present a greater hazard to human life than slow-
moving deep-seated slides. Although most parts of the world
have experienced major socioeconomic losses related to land-
slide activity [2], currently no system exists at either a regional
or a global scale to identify rainfall conditions that may trigger
landslides.

Useful assessment of landslide hazards requires, at the min-
imum, an understanding of both “where” and “when” that
landslides may occur. As Fig. 1 shows, landslides result from
a combination of factors, which according to [6] can be broadly

Conceptual framework of real-time monitoring/warning system for rainfall-triggered landslides at global scale. Note that dashed-line boxes are important

classified into two categories, which are: 1) preparatory vari-
ables that make the land surface susceptible to failure without
triggering it, such as slope, soil properties, elevation, aspect,
land cover, lithology, etc. and 2) the triggering events that
induce mass movement, such as heavy rainfall, and glacier out-
burst. For rainfall-triggered landslides, at least two conditions
must be met: the areas must be susceptible to failure under cer-
tain saturated conditions, and the rainfall intensity and duration
must be sufficient to saturate the ground to a sufficient depth.
Therefore, to diagnose the landslide occurrence, the proposed
system must link two major components: LS information and
real-time precipitation analysis, as shown in Fig. 1. The LS map
empirically shows part of the “where” and the rain intensity-
duration primarily determines the “when” information. In use,
the “where” LS map is overlaid with real-time satellite-based
rainfall “when” layer to detect landslide hazards as a function
of time and location.

In this framework, the first-order control on the spatial
distribution (the “where”) of landslides is the topographic
slope of the ground surface, elevation, soil types, soil texture,
vegetation, and the land cover classification, while the first-
order control on the temporal distribution (the “when”) of
shallow landslides is the space-time variation of rainfall, which
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changes the pore-pressure response in the soil or colluviums to
infiltrating water [7].

B. Dynamic Trigger: Detection of Heavy Rainfall Using
Satellite Observations

The spatial distribution, duration, and intensity of precipi-
tation play an important role in triggering landslides. A long
history of development in the estimation of precipitation from
space has culminated in sophisticated satellite instruments and
techniques to combine information from multiple satellites to
produce long-term products useful for climate monitoring [8].
A fine time resolution analysis, such as the TRMM Multi-
satellite Precipitation Analysis (TMPA) [3], is the key data set
for the proposed landslide monitoring system in this paper.
The TMPA global rainfall map is produced by using TRMM
to calibrate, or adjust, the estimates from other satellite sen-
sors, and then combining all the estimates into the TMPA
final analysis. The coverage of the TMPA depends on input
from different sets of sensors. First, precipitation-related pas-
sive microwave data are collected by a variety of low-earth-
orbit satellites, including the TRMM Microwave Imager (TMI)
on TRMM, Special Sensor Microwave/Imager on Defense
Meteorological Satellite Program satellites, Advanced Micro-
wave Scanning Radiometer for the Earth Observing System
(AMSR-E) on Aqua, and the Advanced Microwave Sounding
Unit B on the National Oceanic and Atmospheric Adminis-
tration (NOAA) satellite series. The second major data source
for the TMPA is the window-channel (~10.7 y) infrared (IR)
data that are being collected by the international constellation
of geosynchronous Earth orbit satellites, which provide ex-
cellent time-space coverage (half-hourly 4 x 4 km equivalent
lat./long. grids) after merged by the Climate Prediction Center
of the National Weather Service/NOAA [9]. The IR brightness
temperatures are corrected for zenith-angle viewing effects
and intersatellite calibration differences. Finally, the research
TMPA also makes use of three additional data sources: the
TRMM Combined Instrument estimate, which employs data
from both TMI and the TRMM Precipitation Radar, as a source
of calibration; the monthly rain gauge analysis developed by
the Global Precipitation Climatology Centre (GPCC) [10]; and
the Climate Assessment and Monitoring System monthly rain
gauge analysis developed by [11]. The TMPA estimates are pro-
duced in four stages, which are: 1) the microwave precipitation
estimates are calibrated and combined; 2) IR precipitation esti-
mates are created using the calibrated microwave precipitation;
3) the microwave and IR estimates are combined; and 4) rain
gauge data are incorporated.

The TMPA is a TRMM standard product at fine time
and space scales and covers the latitude band 50° N-S
for the period 1998 to the delayed present. A real-time
version of the TMPA merged product was introduced in
February 2002 and is available on the NASA TRMM web
site (http://trmm.gsfc.nasa.gov). Early validation results indi-
cate reasonable performance at monthly scales, while at finer
scales the TMPA is successful at approximately reproducing
the surface-observation-based histogram of instantaneous pre-
cipitation over land, as well as reasonably detecting large daily
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events [3]. It is anticipated that this type of product will be
continued as part of the Global Precipitation Measurement
(GPM) mission (http://gpm.gsfc.nasa.gov). GPM is envisioned
as improving the quality and frequency of observations from the
constellation of operational and dedicated research satellites in
order to provide improved global precipitation monitoring for
hydrology and water resources management.

Fig. 2(a) shows a recent example of an instantaneous TMPA
rain rate map downloaded from its web site. Fig. 2(b) shows
climatological percentage of daily rainfall exceeding 2 in/day
over land and Fig. 2(c) is the conditional daily rainfall (i.e.,
the average rainfall on days when it rains) averaged from eight
years of TMPA rainfall data (1998-2005). The availability
of this type of rainfall information quasi-globally provides
an opportunity to derive empirical rainfall intensity-duration
thresholds related to landslides and to examine antecedent
precipitation accumulation continuously in time and space.

C. Global LS Map

1) Background: Previous research [12], [13] has grouped
methods for LS and hazard assessment into inventory, heuristic,
statistical, and deterministic approaches. A landslide inventory
map can be used as an elementary form of hazard information
because it shows the spatial locations of recorded landslides
[14]-[20], although it fails to identify areas that may be sus-
ceptible to landsliding unless landslides have already occurred
[6]. Heuristic approaches require expert opinions to estimate
landslide potential from preparatory variables [21]. The re-
producibility of the results and the subjectivity of weightings
and ratings of the variables are the main limitations to the
applicability of such models [6]. Statistical approaches ac-
cording to [22] have generally taken the form of multivariate
statistical analysis of landscape characteristics that have led to
landslides in the past [23], [24] or a weighted hazard rating
based on environmental attributes related to landsliding [18],
[25]-[28]. Deterministic approaches include the modeling of
physical processes involved in landsliding and therefore may
better pinpoint causes of mass movement [21], [29]. How-
ever, data requirements for such physical models can often
be prohibitive, leading to oversimplification of the results
(6], [21], [27].

According to [22], multivariate statistics or weighted hazard
ratings based on terrain factors contributing to landslides are
most suitable for landslide hazard prediction at medium scale
(1:25000-1:50000). In this paper, a weighted hazard rating
methodology for mapping global LS is applied. This approach
considers the integration of remote sensing and geographic
information system (GIS) techniques, given that most current
models of the hazard prediction and landslide zonation are GIS
based or with the support of GIS [22]. First, a central database
collects several geospatial datasets at global scale. Second,
important terrain factors contributing to landslide occurrence
are derived and a numerical rating scheme for the factors is
developed for spatial data analysis in GIS. Third, correspond-
ing thematic data layers are generated and stored in GIS;
and finally the global susceptibility map is computed by per-
forming a weighted linear combination (WLC) function. The
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(b)

Fig. 2. NASA TRMM-based multisatellite precipitation products. (a) Real-time precipitation observations. (b) Climatological percentage of daily rainfall
exceeding 2 in. (¢) Conditional daily rainfall averaged from eight-year TRMM rainfall data.

resulting global LS map is classified into six relative suscep-
tibility categories.

2) Geospatial Data Sets: Generally, scientists have found
that the soil must be saturated with water for slope failure to
occur. Therefore, slope steepness has the most influence on
shallow landslide likelihood, followed by soil type and the
soil texture of the mass material that mantles the slope, and
the mechanical properties of the underlying rock. Additionally,
vegetation on the slope is critical. In order to generate a LS
map using these geospatial datasets, several assumptions must
made: 1) the landslide occurrences can be characterized by
geospatial data sets considered and 2) the landslide will occur
in the future under similar geoenvironmental circumstances.
The global-scale geospatial datasets used in this paper are
as follows.

1) Digital elevation model (DEM) data and its derivatives.
The basic DEM data sets considered in this system in-
clude NASA Shuttle Radar Topography Mission (SRTM;
http://www2.jpl.nasa.gov/srtm/) and U.S. Geological
Survey’s GTOPO30 (http://edcdaac.usgs.gov/gtopo30/
gtopo30.html). The 30-m spatial resolution provide by
SRTM data is a major breakthrough in digital mapping
of the world, particularly for large portions of the devel-
oping world. DEM data are used to derive topographic
factors (slope, aspect, curvature, etc.) and hydrological

2)

3)

parameters (flow direction, flow path, etc.). All these
DEM derivatives are candidates for mapping the LS map
but later only slope and elevation factors are chosen by
performing the numerical rating screening scheme.
Global Soil Property Information. Global soil property
data sets are taken from Digital Soil of the World pub-
lished in 2003 by the Food and Agriculture Organization
of the United Nations (http://www.fao.org/AG/agl/agll/
dsmw.htm) and available in the International Satellite
Land Surface Climatology Project Initiative II (ISLSCP
II) Data Collection (http://www.gewex.org/islscp.html).
The ISLSCP II data set provides gridded data for 18
selected soil parameters derived from data and methods
developed by the Global Soil Data Task, coordinated by
the Data and Information System of the International
Geosphere-Biosphere Programme (IGBP), and distrib-
uted on CD-ROM by the Oak Ridge National Laboratory
Distributed Active Archive Center (http://daac.ornl.gov/).
The soil parameters used in this paper are soil property
information (including clay mineralogy and soil depth)
and 12 soil texture classes, following the U.S. Department
of Agriculture soil texture classification (including sands,
loam, silt, clay, and their fractions).

Land cover and land use data. The Moderate Resolution
Imaging Spectroradiometer (MODIS) is a key instrument
aboard the Terra and Aqua satellites [30]. MODIS is
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Fig. 3. (a) Global LS map derived from surface multigeospatial data. (b) The six LS categories are: 0—water bodies, permanent snow/ice; 1—very low

susceptibility; 2—low susceptibility; 3—moderate susceptibility; 4—high susceptibility; and 5—very high susceptibility.

viewing the entire earth’s surface every 1 to 2 days,
acquiring data in 36 spectral bands, or groups of
wavelengths (http://modis.gsfc.nasa.gov/index.php). The
global land cover data from MODIS are used as a sur-
rogate for vegetation and land use types. The highest
resolution of the MODIS land cover classification map
is 250 m. The MODIS Land Cover Product describes the
geographic distribution of the 17 IGBP land cover types
based on an annual time series of observations [30].

3) Developing a Prototype Global-Scale LS Map: Most LS
maps at local scales have been generated by using quantitative
relationships between past landslide occurrences and spatial
data sets. Since it is not feasible to collect past landslide
inventory data at the global scale, an approach that considers
a numerical rating scheme for the factors contributing to land-
slide occurrence and a WLC method to derive a final global LS
map is applied in this paper. Based upon the aforementioned
geospatial data sets, several terrain factors that contribute to
landslide occurrences are derived, including elevation, slope,
soil types (clay, loam, silt, and sand, etc.), soil texture, and
land use classification. The factors have been downscaled or
bilinearly interpolated to the highest SRTM spatial scale (30 m)
in this paper. Previous studies [6], [23], [28], [31]-[36] demon-
strated that these geospatial parameters are closely associated
with landslide occurrences and found that a combination of
elevation and slope best portrayed LS [36]. Similarly, [34]
reported that three data layers (slope, elevation, and aspect)

derived exclusively from a DEM provided better results than
six data layers (including other lithology, surficial materials,
and land use). Their results [34], [36] indicated that topography
was the dominant control in determining location of landslide
occurrence. The effect of slope on landslides was documented
in [6] and [32]. They reported slope steepness has the most in-
fluence on shallow landslide likelihood, followed by soil texture
and soil types that mantle the slope. In many regions, elevation
is approximately a proxy for mean rainfall that increases with
height due to orographic effects and high elevation areas are
probably preferentially susceptible to landslides because they
receive greater amounts of rainfall than areas at lower elevations
[36]. Vegetation on the slope is critical because bare slopes are
especially vulnerable to erosion and mass wasting, but slopes
with lush, healthy vegetation are far more resistant [31]. In ad-
dition, land cover can be classified into five classes, which are:
1) forested land; 2) shrub land; 3) grass land; 4) pasture and
cropland; and 5) developed land and road corridors [31], which
describe a continuum of increasing susceptibility (e.g., from
zero to one) to landslides.

Following the above analysis, we first classified each
landslide-controlling factor into various categories. For exam-
ple, according to [31], the MODIS land cover types can be
assigned susceptibility values from zero to one at the order
of increasing LS, respectively. Assignment of LS values for
other parameters is based on several empirical assumptions,
which are: 1) higher slope, higher susceptibility; 2) coarse and
shallow soil is more susceptible than fine and deep soil; and
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TABLE 1
GLOBAL DISTRIBUTION OF LS CATEGORIES
Category 0 1 2 3 4 5
Values 0 0~20 21~34 | 35~55 56~79 | >80
Susceptibility | Water/snow/ice | Very low | Low | Moderate | High | Very high
Y%(globe) 77.9 4.5 6.1 6.8 4.1 0.6
%(land) - 20.3 27.5 130.8 186 |28
TABLE II
TRMM PRECIPITATION ACCUMULATION AND LSM INFO FOR LANDSLIDE CASES
Country Causes/types Susceptibility TRMM Impact
(State/Province) category Rainfall
Time accumulation
04/13/2006 Buenaventura, Storm High 103mm/day >34 death
Colombia
03/25/2006 Oahu, Hawaii Storm Very high 450mm/7day Unknown
2/17/2006 Leyte, Philippines Storm High 400mm/5day >1500
death
01/04/2006 | Jakarta, Indonesia Monsoon High 250mm/3day >200
rains. buried
10/08/2005 | Solola, Guatemala | Hurricane Stan High 300mm/3day >1800
death
09/05/2005 Yuexi County, Rain storm High 450mm/6day
Anhui, China Affected 210,000 people;
Flattened 10,000 houses
08/25/2005 Guwahati, India Rain High 310mm/3day 5 killed
04/13/2005 Santa Cruz, CA Storm High 147mm/day 2 death
1/10/2005 La Conchita, CA Heavy rain High 390mm/14day 12 death
season
11/13/2003 Puerto Rico Hurricane High 145mm/day Unknown
06/05/2001 Puerto Rico Tropical storm High 77mm/day Unknown
05/06/2000 Puerto Rico Tropical storm High 258mm/2day Unknown
08/22/1999 Puerto Rico Hurricane High 255mm/3day Unknown
Debby
10/30/1998 Nicaragua hurricane Very high 720mm/6day >2000
Mitch death
09/22/1998 Puerto Rico Hurricane High 450mm/3day Unknown

3) higher elevation, higher susceptibility. Under assumption 1),
for example, the slope map units are given zero susceptibility
value for the class of flat slopes and susceptibility value one
is assigned to the class of steepest slopes. After assignment
of the numerical values to every landslide-controlling factor,
the second step is to generate thematic data layers and to store
(overlay) these layers in a GIS system. The last step is to derive
the final susceptibility values by performing a WLC function.
WLC is a method where landslide-controlling factors can be
combined by applying primary- and second-level weights [37].
Among the five parameters, the slope is the most important
factor and soil types and soil texture are also primary-level
parameters, while the elevation and land cover types are of
secondary-level importance, based on the above analysis and
previous studies [6], [12]-[36]. Thus, the preliminary weight
determination for the five parameters was chosen as 0.4, 0.2,
0.2, 0.1, and 0.1 for slope, soil type, soil texture, elevation,
and land cover types, respectively, in this paper. The choice of
these weights is also referred to [35, Table II]. The consequent
range in susceptibility values is normalized from zero to 100,
as shown in Fig. 3(a). The larger the susceptibility value, the
greater the landslide potential at that location.

The LS values are then classified into several LS categories
[35]. A judicious way for such classification is to search for
abrupt changes in values [38]. The category boundaries are
drawn at significant changes in the histogram of the LS val-

Worldwide

Intensity (mm/h)

Intensity (mm/h)

Rainfall Duration (h)

Fig. 4. (a) Regional or worldwide empirical rainfall intensity-duration thresh-
olds triggering landslides derived from Godt (2004) for Seattle, Larsen and
Simon (1993) for Puerto Rico, and Caine (1980) for worldwide, respectively;
(b) the lower bound of rainfall intensity-duration threshold (dashed-line:
Intensity = 11.115 Duration—0.39) for several landslides (squares) that oc-
curred in the TRMM operation period (1998-2005) is approximately 0.75 of
the global algorithm from Caine 1980 (dark line).

ues. As a result, the global LS map is finally classified into
six categories: O—water bodies or permanent ice and snow,
1—very low, 2—low, 3—moderate, 4—high, and 5—very high
susceptibility. The very high and high susceptibility categories
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TABLE III
ANTECEDENT RAINFALL ACCUMULATION: LANDSLIDE TRIGGERING THRESHOLDS (MILLIMETERS)
Duration | 12h 24h 48h 72h 96h 120h 144h | 168h | 192h 216h | 240h
Accumulati
Caine 1980 67.5 102.9 157.2 1 201.3 239.9 274.9 307.2 | 337.5 | 366.1 393.4 | 419.5
0.75 scaling 50.625 | 77.175 | 117.9 | 150.975 | 179.925 | 206.175 | 230 2529 | 274.58 | 294 314.25
Used 50 75 120 150 180 200 230 250 275 300 315

account for 2.8% and 18.6% of land areas, as shown in Table 1.
Fig. 3(b) demonstrates the hot spots of the high landslide
potential regions: the Pacific Rim, the Alps, the Himalayas and
South Asia, Rocky Mountains, Appalachian Mountains, and
parts of the Middle East and Africa. India, China, Nepal, Japan,
the USA, and Peru are shown to be landslide-prone countries.
These results are similar to those reported by [2].

III. EXPERIMENTAL PREDICTION SYSTEM FOR
RAINFALL-TRIGGERED LANDSLIDES

A. Linking Rainfall Data With LS

There is a direct relationship between rainfall levels and
the occurrence of landslides [39], which, in return, depends
on the properties of the soil surface [40]. This paper links
the global LS map with the frequently updated satellite-based
precipitation information to identify when areas with high
landslide potential are receiving heavy rainfall. Table II lists
several major landslides over the NASA TRMM operational
period (1998—present). The rainfall totals are accumulated from
the TRMM database and the sliding susceptibility category is
taken from the global LS map [Fig. 3(b)]. Despite variations
among the cases, the production of shallow landslides obvi-
ously requires intense rainfall, sustained for at least a brief
period of time, in areas with susceptibility category of “high”
or above.

B. Global-Scale Experimental Prediction System for
Rainfall-Triggered Landslides

Landslide hazard assessment based on relationships with
rainfall intensity-duration has been applied at both global [41]
and regional scales [42]-[44]. As shown in Fig. 4(a), empirical
rainfall intensity-duration thresholds have been developed for
Seattle [44], Puerto Rico [43], and worldwide [41]. The squares
in Fig. 4(b) indicate the rainfall intensity-duration plots of
landslide cases that occurred within the TRMM observation
period (1998—current). The lower bound of rainfall intensity-
duration threshold can be approximately identified if a scaling
factor, 0.75, is applied to the worldwide threshold from [41].
We believe that the reason for a scaling factor is the coarse res-
olution of global rainfall data being used, 25 km. Table III lists
the thresholds of rainfall accumulation triggering landslides
according to the worldwide threshold [41] and the 0.75-scaled
threshold (e.g., Intensity = 11.115 Duration’osg). When cou-
pled with real-time rainfall data, such rainfall intensity-duration
thresholds can provide the basis for early warning systems
for shallow landslides [45]. An experimental prediction sys-
tem for real-time landslide hazard assessment based on the

adjusted rainfall intensity-duration threshold has been devel-
oped from these concepts and a trial version of this oper-
ational system is displayed on the NASA TRMM website
(http://trmm.gsfc.nasa.gov/publications_dir/_landslide.html).
Accumulations of the real-time TMPA precipitation for various
time intervals are computed and compared with the rainfall
intensity-duration thresholds [Fig. 4(b) and Table III] every
3 h. Those locations receiving rainfall exceeding the intensity-
duration thresholds are marked as a landslide hazard zone if the
underlying susceptibility category is “high” or “very high” at
that location. The locations and timing of predicted landslides
can then be checked against first-hand accounts from the field
or validated by later news reports.

This experimental global prediction system for rainfall-
triggered landslides is initially evaluated by comparing with
reported landslide occurrences within the eight-year TRMM
operational time period. For example, one landslide case was
predicted by this experimental system on April 13, 2006, in
Colombia. The rainfall accumulation for the previous 24 h was
103 mm over central Colombia and the LS map indicates sus-
ceptibility category high at this area, so the landslide hazard is
color-coded as red on the web-based graphical interface. Later
news reports indicated that at least 34 people were missing
and four villages were destroyed in a landslide near the Pacific
port city of Buenaventura in southwestern Colombia. Table IV
lists 25 landslide occurrences collected from worldwide news
reports, the TRMM website, and other sources. The calculated
probability of detection is 0.76, 19 successful detections out of
total 25 occurrences (Table IV). Among the six failures, three
cases are caused by short-term heavy rainfall, two cases are by
heavy rainfall on snow or snow melting, and one case is due
to monsoon rainfall in India. This also demonstrates that the
current algorithm does not work well for landslides triggered
by very intense rainfall in a relatively short time period (i.e.,
less than 12 h) or by processes involving rapid snow melting.

IV. SUMMARY AND DISCUSSION

The primary criteria which influence shallow landslides are
precipitation intensity, slope, soil type, elevation, vegetation,
and land cover type. Drawing on recent advances in remote
sensing technology and the abundance of global geospatial
products, this paper proposed a conceptual framework for a
real-time prediction system (Fig. 1) for rainfall-triggered land-
slides across the globe. This system combines the NASA TMPA
precipitation information (Fig. 2; http://trmm.gsfc.nasa.gov)
and land surface characteristics to assess landslides. First,
a prototype of a global LS map (Fig. 3 and Table I) is
produced using NASA SRTM and U.S. Geological Survey
GTOPO30 DEM, DEM derivatives such as slope, soil-type
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TABLE 1V
EVALUATION OF THE EXPERIMENTAL SYSTEM BY RETROSPECTIVELY COMPARING WITH REPORTED WORLDWIDE LANDSLIDES
WITHIN LAST EIGHT-YEAR TRMM OPERATIONAL PERIOD

Country Detected (YES) Causes/types Major losses and
Time (State/Province) or failed (NO) damage
Aug. 22, Ban Thahan Village in | NO Heavy Rainfall/flash Flood Blocking the roads
2006 Phang Nga,
Thailand
Aug. 20, Holiday village of YES Heavy shower, Unknown
2006 Gulval in Cornwall,
UK
Aug. 20, Surat Thani, Thailand | YES Heavy rainfall and flash flood | 600 residents evacuated
2006
Aug. 19, Song Bang town of YES caused by prolonged heavy 10 killed
2006 northern mountainous rains
Cao Bang province,
Vietnam
Jul. 31, Roer Gulch east of NO Heavy rainfall/flash flood Unknown
2006 Telluride, CO, USA
Jul. 9 South Korea YES Typhoon Ewiniar, >300mm Widespread mudslide
Jun. 28, Albany, upstate of NY | YES Heavy rainfall, 400mm/5 2 killed
2006 days
Jun. 25, Villages of Chamba NO Strom, flash flood Six houses swept away
2006 District, Shimla, India
Jun. 20, Sinjai in South Island YES Heavy rainfall >250mm >200 deaths
2006 of Sulawesi
Indonesian
May 17, The Schweitzer NO Rain on snow and snowmelt, | Condo buildings damaged
2006 Mountain Ski resort, Rocks, mudslide, and debris
Sandpoint, Idaho flows
Apr. 13, Buenaventura, YES Rain storm, 103.04mm/ day >34 death
2006 Colombia
Jan. 04, Jakarta, Indonesia YES Monsoon rains, 250mm/3day | >200 buried
20006
Oct. 8, Solola, Guatemala YES Hurtricane Stan, 300mm/3day | >1800 death
2005
Sep. 5, 2005 | Yuexi County, YES Rain storm, 450mm/6day 210,000 people affected;
Anhui, China 10,000 houses flattened
Aug. 5, Guwabhati, India NO Monsoon Rain, 310mm/3day 5 killed
2005
Jan. 10, La Conchita, CA YES Heavy rain season, 12 death
2005 390mm /14day
Oct., 2004 Miyagawa area, Mie YES Heavy and intense rainfall; 17 deaths, 9 injuries; 87
prefecture, Japan Numerous landslides and homes damaged/; extensive
debris flow forest damage
Jul. 20, Minamata and YES Heavy and intense rainfall; 25 deaths; 7 homes
2003 Hishikari, southern Debris avalanches and debris | destroyed; roads, power and
Kyushu, Japan flows hot spring lines damaged
May 2003 Ratnapura and YES Continual heavy rains; >260 deaths; > 24,000
Hambantota Districts, Many landslides and debris homes/schools destroyed;
Sri Lanka flows 180,000 families homeless
May 11, Southwest Guizhou YES Heavy rainfall and road 35 road workers killed and 2
2003 Province, China construction; road-related buildings and road
landslides destroyed
Apr. 20, Kara Taryk, NO Rain-on-snow; large 38 deaths; 13 homes
2003 Kyrgyzstan landslides in Soviet-era destroyed; potential
uranium mining area pollution of a river
Dec. 14-16, | North coast of YES Nearly 1000mm/3 days; About 30,000 deaths; 8,700
1999 Venezuela near Carcas Widespread shallow residences destroyed;
landslides and debris flows extreme infrastructure
along a 40-km coastal strip damage
Oct. 30, Casita Volcano, YES hurricane Mitch, >2000 death
1998 Nicaragua 720mm/6day
Aug. 26-31, | Nishigo, shirakawa, YES 5 days of heavy rainfall; 9 deaths; many
1998 and Nasu, Japan >1000 landslides homes/buildings destoryed
Aug. 17, Malpa, Northern YES 4 days of heavy rainfall; 207 deaths; 5.2 million
1998 India Large rockfall/debris rupees direct cost and 0.5
avalanche million rupees indirect cost

information downscaled from the Digital Soil Map of the World
(sand, loam, silt, or clay, etc.), soil texture, and MODIS land
cover classification. Second, this map is overlaid with satellite-
based observations of rainfall intensity-duration [Fig. 4(b) and
Table III], to identify the location and time of landslide hazards
when areas with significant LS are receiving heavy rainfall. The
effectiveness of this system is compared to several recent land-

slide events that occurred during the TRMM operational period
(Table IV). A major outcome of this paper is the availability of a
global prospective on rainfall-triggered landslide disasters, only
possible because of the utilization of global satellite products.
This type of real-time prediction system for disasters could
provide policy planners with overview information to assess the
spatial distribution of potential landslides. However, ultimate
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decisions regarding site-specific LS will continue to be made
only after a site inspection.

A global evaluation of this system is underway through com-
parison with various field databases, web sites, and news reports
of landslide disasters. The need for retrospective validation and
improvement of this experimental system requires continued
collection of global landslide data. The prototype of this system
can be enhanced by providing improved satellite remote sensing
products and by updating the geospatial database as more
relevant information becomes available. Specifically, the land
cover data should be routinely updated because they are subject
to change by human activity. Several future activities are under
consideration.

1) More information, such as geologic factors, could be
incorporated into this global LS when they become avail-
able globally.

2) Finer resolution DEM data such as 6.1 x 6.1 m LIDAR-
based data can also improve the LS mapping, even if only
available over small areas.

3) Soil moisture conditions observed from NASA Aqua
satellite with the AMSR-E instrument or an antecedent
precipitation index accumulated from TRMM will be
examined for usefulness in this experimental landslide
detection/warning system.

4) The empirical rainfall intensity-duration threshold trig-
gering landslides may be regionalized using mean cli-
matic variables (e.g., mean annual rainfall).

Given the fact that landslides usually occur after a period of
heavy rainfall, a real-time landslide prediction system can be
readily transformed into an early warning system by making
use of the time lag between rainfall peak and slope failure.
Therefore, success of this prototype system bears promise as an
early warning system for global landslide disaster preparedness
and hazard management. Additionally, it is possible that the
warning lead time of global landslide forecasts can be ex-
tended by using rainfall forecasts (1-10 days) from operational
numerical weather forecast models. This real-time prediction
system bears the promise to extend current local landslide
hazard analyses into a global decision-making support system
for landslide disaster preparedness and mitigation activities
across the world.
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